EE 435

Lecture 23

Layout of Analog Circuits (brief)
Common Mode Feedback Circuits

Lecture 22 Executive Summary

Thank You Matthew

Random Offset Voltage Distribution

- The random offset voltage typically has a normal distribution where the mean is the systematic offset voltage
- Random offset voltage is caused by variations in the process parameters and device dimensions, these are a result of random variations and correlated gradient effects

Bipolar devices typically have smaller offset voltages compared to MOS devices

Typical offset voltages:
MOS - 5 mV to 50 MV
BJT - 0.5 mV to 5 mV

Typically when a process parameter, $p(x, y)$, varies linearly throughout a two-dimensional region:

$$
p_{E Q}=\frac{1}{A} \int_{A} p(x, y) d x d y
$$

If a common mode centroid layout is used, then lateral (linear) variable parameters will ideally not introduce offset voltages

Usually increasing the area of a device decreases the random offset variation

Model Parameter Variation

$$
p_{E Q}=\frac{1}{A} \int_{A} p(x, y) d x d y
$$

Review from last lecture

correspondingly: Random Offset Voltages

$$
\sigma_{V_{\text {os }}}^{2}=2\left[\frac{A_{V T O n}^{2}}{W_{n} L_{n}}+\frac{\mu_{p}}{\mu_{n}} \frac{L_{n}}{W_{n} L_{p}^{2}} A_{V T O p}^{2}+\frac{V_{E B n}^{2}}{4}\left(\begin{array}{l}
\frac{1}{W_{n} L_{n}} A_{\mu_{n}}^{2}+\frac{1}{W_{p} L_{p}} A_{\mu_{p}}^{2}+A_{\operatorname{Cox}}^{2}\left[\frac{1}{\mathrm{~W}_{n} L_{n}}+\frac{1}{W_{p} L_{p}}\right] \\
+2 A_{L}^{2}\left[\frac{1}{W_{n} L_{n}^{2}}+\frac{1}{W_{p} L_{p}^{2}}\right]+A_{w}^{2}\left[\frac{1}{L_{n} W_{n}^{2}}+\frac{1}{L_{p} W_{p}^{2}}\right]
\end{array}\right]\right)
$$

which again simplifies to

$$
\sigma_{V_{O S}}^{2} \cong 2\left[\frac{A_{V T O n}^{2}}{W_{n} L_{n}}+\frac{\mu_{p}}{\mu_{n}} \frac{L_{n}}{W_{n} L_{p}^{2}} A_{V T O p}^{2}\right]
$$

Random Offset Voltages

$$
\sigma_{V_{0 s}}^{2} \cong\left[\frac{A_{\text {VTOn }}^{2}}{W_{n} L_{n}}+\frac{\mu_{p}}{\mu_{n}} L_{n} L_{n} L_{p} A_{\text {vTOp }}^{2}\right]
$$

This expression has somewhat peculiar coefficients. The first term on the right is dependent upon the reciprocal of the area of the n-channel device but the corresponding coefficient on the second term on the right appears to depend upon the dimensions of both the n -channel and p -channel devices. But this can be rewritten as

$$
\sigma_{V_{O S}}^{2} \cong 2\left[\frac{A_{V T O n}^{2}}{W_{n} L_{n}}+\left(\frac{V_{E B n}}{V_{E B p}}\right)^{2} \frac{A_{V T O p}^{2}}{W_{p} L_{p}}\right]
$$

The dependence of the variance on the area of the n -channel and p -channel devices is more apparent when written in this form.

Review from last lecture
 Source of Random Offset Voltages

The random offset voltage is almost entirely that of the input stage in most op amps

(a)

(b)

Review from last lecture

Random Offset Voltages

(a)

(b)

It can be shown that

$$
\sigma_{V_{O S}}^{2} \simeq 2 \mathrm{~V}_{\mathrm{t}}^{2}\left[\frac{\mathrm{~A}_{\mathrm{Jn}}^{2}}{\mathrm{~A}_{\mathrm{En}}}+\frac{\mathrm{A}_{\mathrm{Jp}}^{2}}{\mathrm{~A}_{\mathrm{Ep}}}\right]
$$

where very approximately

$$
A_{J n}=A_{J p}=0.1 \mu
$$

Random Offset Voltages

Typical offset voltages:

MOS - 5 mV to 50MV
BJT - 0.5 mV to 5 mV

These can be scaled with extreme device dimensions
Often more practical to include offset-compensation circuitry

Common Centroid Layouts

Almost Theorem:

If $p(x, y)$ varies linearly throughout a two-dimensional region, then $p_{E Q}=p\left(x_{0} \cdot y_{0}\right)$ where x_{0}, y_{0} is the geometric centroid to the region.

If a parameter varies linearly throughout a two-dimensional region, it is said to have a linear gradient.

Many parameters have a dominantly linear gradient over rather small regions but large enough to encompass layouts where devices are ideally matched

Review frop last lecture
 Common Centroid Layouts

$\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ is geometric centroid

$$
p_{E Q}=\frac{1}{A} \int_{A} p(x, y) d x d y
$$

If $\rho(x, y)$ varies linearly in any direction, then the theorem states

$$
P_{E Q}=\frac{1}{A} \int_{A} p(x, y) d x d y=p\left(x_{0}, y_{0}\right)
$$

Common Centroid of Multiple Segmented Geometries

 $M_{1 A}$

$$
M_{1 B}
$$

If these are layouts of gates of two transistors with two segments, M_{1} and M_{2} have common centroids. They are thus termed common-centroid layouts

Common Centroid Layout Surrounded by Dummy Devices

Fingers and Multipliers

- Multiple fingers use shared diffusions
- Multipliers refer to multiple copies of transistors with individual drains and sources
Important to match orientation if overall device matching is required

Fingers and Multipliers

Alternate Orientations

If matching is important, orientations should be identical

Fingers and Multipliers

Alternate Orientations

Which layout would be best for the critical differential input pair in an operational amplifier?

Of course, a common-centroid variant would likely be used !

Fingers and Multipliers

Alternate Orientations

Which layout would be best for the critical differential input pair in an operational amplifier?

Of course, a common-centroid variant would likely be used !

Common-Mode Feedback

Needs CMFB

Repeatedly throughout the course, we have added a footnote on fullydifferential circuits that a common-mode feedback circuit (CMFB) is needed for some circuits

If required, the CMFB circuit establishes or "stabilizes" the operating point or operating points of the op amp

Common-Mode Feedback

On the reference op amp, the CMFB signal can be applied to either the pchannel biasing transistors or to the tail current transistor

It is usually applied only to a small portion of the biasing transistors though often depicted as shown

There is often considerable effort devoted to the design of the CMFB though little details are provided in most books and the basic concepts of the CMFB are seldom rigorously developed and often misunderstood

Common-Mode Feedback

Partitioning biasing transistors for V_{FB} insertion
(Nominal device matching assumed, all L's equal)

Ideal (Desired) biasing

Partitioned V_{FB} insertion

$$
\begin{aligned}
& W_{3 A}+W_{3 B}=W_{3} \\
& W_{3 B} \ll W_{3 A}
\end{aligned}
$$

Of course L/R symmetry is assumed

Basic Operation of CMFB Block

CMFB Block

$V_{\text {Oxx }}$ is the desired quiescent voltage at the stabilization node (irrespective of where V_{FB} goes)

Basic Operation of CMFB Block

CMFB Block

$$
V_{F B}=\left(\frac{V_{01}+V_{02}}{2}\right) A(s)
$$

$\mathrm{V}_{\mathrm{Oxx}}$ is the desired common-mode output voltage (assuming A is large)

- Comprised of two fundamental blocks

Averager
Differential amplifier

- Sometimes combined into single circuit block
- CMFB is often a two-stage amplifier so compensation of the CMFB path often required !!

Mathematics behind CMFB

(consider an example that needs a CMFB)

Notice there are two capacitors and thus two poles in this circuit

Mathematics behind CMFB

(consider an example that needs a CMFB)

Small-signal model showing axis of symmetry (for $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{\text {NQ }}$ i.e. $v_{1}=v_{2}=\mathrm{VV}$)
What order transfer functions are expected (note two capacitors!)?

Mathematics behind CMFB

(consider an example that needs a CMFB)

Small-signal difference-mode half circuit

$$
\begin{aligned}
& V_{\text {OD }}\left(\mathrm{sC}+\mathrm{g}_{01}+g_{05}\right)+g_{m 1} \frac{V_{d}}{2}=0 \\
& A_{\text {DIIFF }}=\frac{-\frac{g_{m 1}}{2}}{s C+g_{01}+g_{05}} \\
& \mathrm{p}_{\text {DIFF }}=\frac{-\frac{g_{01}+g_{05}}{C}}{C}
\end{aligned}
$$

Note there is a single-pole in this circuit
What happened to the other pole?

Mathematics behind CMFB

(consider an example that needs a CMFB)

Standard small-signal common-mode half circuit

$$
\begin{aligned}
& V_{o c}\left(\mathrm{sC}+\mathrm{g}_{01}+\mathrm{g}_{05}\right)+\mathrm{g}_{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{com}}-\mathrm{V}_{\mathrm{s}}\right)=0 \\
& \left.V_{s}\left(g_{01}+g_{03} / 2\right)-g_{m 1}\left(V_{\text {сом }}-V_{s}\right)=V_{o c} g_{01}\right\} \\
& A_{\text {СОм }}=\frac{-g_{m 1}\left(g_{01}+g_{03} / 2\right)}{\left(s C+g_{01}+g_{05}\right)\left(g_{m 1}+g_{01}+g_{03} / 2\right)-g_{m 1} g_{01}} \cong-\frac{g_{01}+g_{03} / 2}{s C+g_{05}} \\
& p_{\text {com }}=-\frac{g_{05}}{C}
\end{aligned}
$$

Note there is a single-pole in this circuit
And this is different from the difference-mode pole

But the common-mode gain tells little, if anything, about the CMFB

Mathematics behind CMFB

Second-order gain functions would have occurred had we not created symmetric half-circuits by assuming $v_{1}=v_{2}$

Mathematics behind CMFB

 (consider an example that needs a CMFB)$A_{\text {сом }} \simeq-\frac{g_{01}+g_{03} / 2}{s C+g_{05}}$

$$
\mathrm{p}_{\text {Сом }}=-\frac{g_{05}}{\mathrm{C}}
$$

$A_{\text {DIFF }}=\frac{-\frac{g_{\text {m } 1}}{2}}{s C+g_{01}+g_{05}}$

$$
p_{\text {DIFF }}=-\frac{g_{01}+g_{05}}{C}
$$

- Difference-mode analysis of symmetric circuit completely hides all information about common-mode
- This also happens in simulations
- Common-mode analysis of symmetric circuit completely hides all information about difference-mode
- This also happens in simulations
- Difference-mode poles may move into RHP (for two-stage structures) with FB so compensation is required for proper operation (or stabilization)
- Common-mode poles may move into RHP (for two-stage structures) with FB so compensation is required for proper operation (or stabilization)
- Difference-mode simulations tell nothing about compensation requirements for common-mode feedback
- Common-mode simulations tell nothing about compensation requirements for difference-mode feedback

Mathematics behind CMFB

(consider an example that needs a CMFB)
$A_{\text {сом }} \simeq-\frac{g_{01}+g_{03} / 2}{s C+g_{05}}$

$$
\mathrm{p}_{\text {сом }}=-\frac{g_{05}}{\mathrm{C}}
$$

$A_{\text {DIFF }}=\frac{-\frac{g_{m 1}}{2}}{s C+g_{01}+g_{05}}$
$p_{\text {DIFF }}=-\frac{g_{01}+g_{05}}{C}$

- Common-mode and difference-mode gain expressions often include same components though some may be completely absent in one or the other mode
- Compensation capacitors can be large for compensating either the common-mode or difference-mode circuits
- Highly desirable to have the same compensation capacitor serve as the compensation capacitor for both difference-mode and common-mode operation
- But tradeoffs may need to be made in phase margin for both modes if this is done
- Better understanding of common-mode feedback is needed to provide good solutions to the problem

Does this amplifier need compensation?

No - because it is a single-stage amplifier ?
The difference-mode circuit of this 5T op amp usually does not need compensation?
But what about the common-mode operation?
No - because the common-mode circuit is also a single-stage circuit?
What are the common-mode inputs for CMFB?
$\mathrm{V}_{\mathrm{B} 1}$ or $\mathrm{V}_{\mathrm{B} 2}$
But observe that the common-mode inputs $\mathrm{V}_{1 \mathrm{C}}$ and $\mathrm{V}_{2 \mathrm{C}}$ are not the commonmode inputs for the CMFB?

Does this amplifier need compensation?

This circuit has 3 different natural common-mode inputs:

$$
V_{B 1}, V_{B 2}, \frac{V_{1}+V_{2}}{2}
$$

$\mathrm{V}_{\mathrm{B} 1}$ or $\mathrm{V}_{\mathrm{B} 2}$ (or possibly both in some way) are the inputs for CMFB
Can it be argued that it is still a single-stage common-mode circuit irrespective of which common-mode input is used and thus compensation of the common-mode circuit will not be required?

Does this amplifier need compensation?

The CMFB path from V_{FB} back to V_{FB} is a two-stage feedback amplifier comprised of the common-mode gain of the basic 5 T circuit from V_{FB} to $\mathrm{V}_{\text {OUT }}$ and the common-mode gain from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {FB }}$
This amplifier needs compensation (of the CMFB path) even if the basic amplifier is single-stage

The overall amplifier including the β amplifier for the differential feedback path should be considered when compensating the CMFB circuit

If a second-stage is added to the 5T op amp, the compensation network for the differential stage may also provide the needed compensation for the CMFB path

Common-Mode and Difference-Mode Issues

Overall poles are the union of the common-mode and difference mode poles
Separate analysis generally required to determine common-mode and difference-mode performance

Some amplifiers will need more than one CMFB

Common-mode offset voltage

Assume ideally $\mathrm{V}_{\mathrm{B} 1}$ will provide the desired value for $\mathrm{V}_{\mathrm{OXX}}$

Definition: The common-mode offset voltage is the voltage that must be applied to the biasing node at the CMFB point to obtain the desired operating point at the stabilization node

Note: Could alternately define common-mode offset relative to $\mathrm{V}_{\mathrm{B} 2}$ input if CMFB to M_{3}

Common-mode offset voltage

Consider again the Common-mode half circuit

There are three common-mode inputs to this circuit !
The common-mode signal input is distinct from the input that is affected by $\mathrm{V}_{\text {coff }}$ The gain from the common-mode input where V_{FB} is applied may be critical ! How do the poles from the three different CM inputs relate to each other?

They are the same!!

$A_{\text {com }}=\frac{V_{02}}{V_{\text {C1 }}} \cong-\frac{g_{02}+g_{03} / 2}{s C+g_{04}}$
$A_{\text {COM2 } 2}=\frac{V_{02}}{V_{\mathrm{C} 2}} \cong-\frac{g_{m 4}}{s C+g_{04}}$
$A_{\text {сом } 3}=\frac{V_{02}}{V_{\text {C3 }}} \cong-\frac{g_{m 3} / 2}{s C+g_{04}}$

$\mathrm{A}_{\text {COM20 }} \cong-\frac{\mathrm{g}_{\text {m4 }}}{\mathrm{g}_{04}}=-\frac{2 I_{T} / V_{E B 4}}{\lambda I_{T} / 2}=-\frac{4}{V_{E B 4} \lambda}$
$A_{\text {СОМ } 30} \cong-\frac{g_{\mathrm{m} 3} / 2}{g_{04}}=-\frac{\frac{2 \mathrm{I}_{\mathrm{T}}}{\mathrm{VEB3}} / 2}{\lambda \mathrm{I}_{\mathrm{T}} / 2}=-\frac{2}{\lambda \mathrm{~V}_{\mathrm{EB} 3}}$
Although the common-mode gain $\mathrm{A}_{\text {сомо }}$ is very small, $\mathrm{A}_{\text {com20 }}$ is very large! (but can be reduced by partitioning M_{4})

Shift in $V_{02 Q}$ from $V_{0 x x}$ is the product of the common-mode offset voltage and $\mathrm{A}_{\text {сом } 20}$

Effect of common-mode offset voltage

$$
\begin{gathered}
\mathrm{A}_{\text {СОм } 20} \cong-\frac{4}{V_{E B 5} \lambda} \\
\Delta \mathrm{~V}_{02}=\mathrm{A}_{\text {СОм } 20} \mathrm{~V}_{\mathrm{COFF}}
\end{gathered}
$$

How much change in V_{02} is acceptable? (assume e.g. 50 mV)
How big is $\mathrm{V}_{\text {COFF }}$? (similar random expressions for $\mathrm{V}_{\text {OS }}$, assume, e.g. 25 mV) (that due to process variations even larger)
How big is $\mathrm{A}_{\text {сом } 20}$?
(if $\lambda=.01, \mathrm{~V}_{\text {EB }}=.2, \mathrm{~A}_{\text {СОм } 20}=2000$)
If change in V_{02} is too large, CMFB is needed

$$
(50 \mathrm{mV}>? 2000 \times 25 \mathrm{mV})
$$

How much gain is needed in the CMFB amplifier?

CMFB Block

CMFB must compensate for $\mathrm{V}_{\text {Coff }}$
Want to guarantee

$$
\left|V_{02 Q}-V_{0 x x}\right|<\Delta V_{\text {OUT-ACCEPTABLE }}
$$

This is essentially the small-signal output with a small-signal input of $\mathrm{V}_{\text {COFF }}$

How much gain is needed in the CMFB amplifier?

The CMFB Loop
Do a small-signal analysis, only input is $\mathrm{V}_{\text {CoFF }}$

$$
V_{02}=\left(V_{02} A+V_{\text {COFF }}\right) A_{\text {COM } 2}
$$

$$
V_{02}=V_{\text {COFF }} \frac{A_{\text {СОМ } 2}}{1-A A_{\text {Сом } 2}}
$$

$$
\Delta \mathrm{V}_{\text {OUT-ACCEPTABLE }}=\mathrm{V}_{\text {COFF }} \frac{\mathrm{A}_{\text {COM } 2}}{1-\mathrm{AA}_{\text {СОМ } 2}}
$$

How much gain is needed in the CMFB

- Node \mathbf{Y} is common to both differential feedback loop and CMFB loop
- This does not require a particularly large gain
- This is the loop that must be compensated since A and $\mathrm{A}_{\text {COMP2 }}$ will be frequency dependent
- Miller compensation capacitor for compensation of differential loop will often appear in shunt with C_{2}
- Can create this "half-circuit" loop (without CM inputs on a fully differential structure) for simulations
- Results extend readily to two-stage structures with no big surprises
- Capacitances on nodes \mathbf{X} and \mathbf{Y} as well as compensation C in A amplifier (often same as capacitor on \mathbf{Y} node) create poles for CMFB circuit
- Reasonably high closed-loop CMFB bandwidth needed to minimize shifts in output due to high-frequency common-mode noise
Compensation of CMFB loop will affect differential compensation if C_{2} needs to be changed

CMFB Circuits

- Several (but not too many) CMFB blocks are widely used
- Can be classified as either continuous-time or discrete-time

C_{S} small compared to C_{1}

- $\mathrm{V}_{\text {OXX }}$ generated by simple bias generator
- φ_{1} and φ_{2} are complimentary non-overlapping clocks that run continuously
- At this point, think of $\mathrm{V}_{\mathrm{dmp}}$ as a place to "dump" the current from the diff pairs
- But $\mathrm{V}_{\mathrm{dmp}}$ does contain the same information as V_{FB}, only of opposite sign!

CMFB Circuits

φ_{1} and φ_{2} are complimentary non-overlapping clocks that run continuously

- non-overlap of φ_{1} and φ_{2} is critical but frequency is not critical
- Could even have 25% or less duty cycle to guarantee non-overlap
- φ_{1} and φ_{2} run asynchronously with respect to the op amp

CMFB Circuits

Several (but not too many) CMFB circuits exist
Can be classified as either continuous-time or discrete-time

Circuit in blue can be added to double CMFB gain

Stay Safe and Stay Healthy !

End of Lecture 23

